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Abstract--The relationship between the max imum cumulative displacement on a fault (D) and the maximum 
linear dimension of the fault surface (W) is given by the expression D = c W ' ,  where the value of c is determined 
by rock properties; proposed values for n range from 1.0 to 2.0. Published datasets of D vs W measurements ,  
together with new data, are presented in a common format.  Most datasets are derived from maps  and so the 
measurements  of displacement and length do not represent  max imum values for each fault. This factor, together 
with more  than an order of magnitude range of c, causes regression on D vs W plots to be unsafe unless the range 
of W values plotted is ca 5 orders of  magnitude.  This restriction means  that individual datasets must  be combined 
to achieve the required range of fault size. Data analysis shows that the value of n must  exceed 1.0 but  
discrimination between values of 1.5 and 2.0 cannot be made on the basis of data analysis alone. A modified fault 
growth model in which the increase in dimension of a fault with each slip event is proportional to W °5 gives rise to 
a value for n of 1.5. As this model has a sound mechanical basis 1.5 is the preferred value for n. The value of n 
influences other  aspects of fault geometry,  including the displacement profile on a fault surface, the spacing of 
depth contours on faulted horizons and the displacement populations of single fault surfaces. 

INTRODUCTION 

NUMEROUS datasets are available for investigation of the 
relationship between the dimensions of a fault surface 
and the maximum value of the fault offset, or displace- 
ment, Although the several investigators are agreed that 
the relationship is of the form 

D = c W  n, (1) 

where D = maximum displacement, c = constant, 
related to material properties (including shear modulus) 
and W = fault dimension, proposed values of n range 
from 1.0 to 2.0 (Ranalli 1977, Watterson 1986, Villemin 
& Sunwoo 1987, Walsh & Watterson 1988, Scholz & 
Cowie 1990, Marrett  & Allmendinger 1991, Cowie & 
Scholz 1992a,b). Evaluation of the data is complicated 
by lack of comparability of datasets, limited size ranges 
of faults within individual datasets, uncertainties regard- 
ing accuracy of data and by the lack of agreement on how 
the data should be analysed. Some authors have con- 
cluded that n = 1.0 while others have proposed values 
for n which exceed 1.0; other than agreement that a 
power-law relationship exists there is no concensus 
regarding further conclusions which can be drawn from 
the data. We have collated the relevant published data 
and present most of them, together with our own unpub- 
lished data, in a common format. The principal datasets 
considered are those given by the Minor Faults Research 
Group (MFRG,  1973), MacMillan (1975), Elliott 
(1976), Ranalli (1977), Ruzhich (1977), Muraoka & 
Kamata (1983), Krantz (1988), Walsh & Watterson 
(1988), Opheim & Gudmundssen (1989) and Marrett  & 
Allmendinger (1991). We then consider the problems 
which arise in analysing the data and the consequent 
uncertainties which attend conclusions derived from the 
analysis. The main reason for wishing to obtain a 

reliable determination of n is that its value is a principal 
constraint on fault growth models which, in turn, are 
necessary for modelling strains within faulted volumes. 
The value of n also has a direct practical application in 
fault interpretation from seismic reflection data, in 
which minimum and maximum estimates of fault trace 
lengths can be used to choose between alternative fault 
correlations. 

FAULT PARAMETERS 

Dimens ions  

The linear dimensions of a single isolated fault surface 
are more easily defined than measured. In ideal cases the 
tip-line is a closed elliptical loop and the dimension used 
can be either a principal axis of the ellipse or the 
diameter of the equivalent circle, We define the maxi- 
mum dimension of the fault plane in the direction 
perpendicular to the slip direction to be the width, Win. 
The maximum dimension in the direction parallel to slip 
direction is defined as the length, L m. In the case of 
normal faults and thrusts the width is horizontal and the 
length is in the vertical plane. These dimensions can be 
determined only in cases where the fault surface is 
mapped in three dimensions from either mine plan, 
seismic reflection or similar data, or by excavation of 
small faults in unconsolidated sediments. Most pub- 
lished data are derived from maps on which the fault 
trace lengths are measured (cf. length dimension of a 
fault surface). Fault traces on maps are chords on the 
fault surface, which are sub-parallel to the horizontal in 
the case of normal and reverse faults, with the chord 
lengths designated We, and are parallel to the length axis 
of strike-slip faults, with chord lengths designated L¢. 
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Some outcrop data are available for chord lengths paral- 
lel to the down-dip, or length, axes of small normal 
faults. The maximum dimension of a fault is likely to be 
underestimated when derived from a map trace 
measurement.  The mean value of chord dimensions on 
an elliptical fault surface is 0.75 of the principal axis to 
which the chords are parallel. W and L without sub- 
scripts refer to data for either maximum or chord dimen- 
sions or both where the distinction is either not possible 
or is unnecessary. 

The concept of the single isolated fault is artificial 
insofar as it is strongly dependent  on the scale of obser- 
vation. The difficulty is partly resolved by the fact that a 
map of a given scale usually represents only faults with a 
limited range of sizes--usually spanning no more than 2 
orders of magnitude of trace length. Even though fault 
traces represented by a single line on a map may be seen 
to consist of several individual elements when viewed on 
a larger scale map, the concept of a single fault is still 
useful when associated with a given scale. As fault 
systems appear to conform to the concept of geometrical 
coherence (Walsh & Watterson 1991) a small fault may 
be considered as a single fault at one scale but as a minor 
element of a larger fault when viewed on a different 
scale. Discontinuous, or segmented, traces of single 
faults with trace segments separated by relay zones 
(Larsen 1988) can be identified by the unusually high 
displacement gradients characteristic of segment tips 
(Walsh & Watterson 1990, Peacock 1991, Peacock & 
Sanderson 1991). Peacock (1991) has shown that for 
strike-slip faults developed within sandstone-shale se- 
quences, fault segmentation is strongly influenced by 
lithology, with contractional relay zones in shales and 
extensional relay zones in sandstones (e.g. Peacock 
1991, fig. 10); the displacement-dimension character- 
istics of individual fault segments is therefore sequence- 
related. Since the lengths and displacements of indi- 
vidual segments are not characteristic of the fault as a 
whole (Walsh & Watterson 1990, Peacock & Sanderson 
1991), the array of segments is identified and treated as a 
single fault. 

Regardless of scale, the length of a fault trace is 
defined as the distance between two tip-points at each of 
which the displacement is zero. Fault traces drawn on 
maps are usually underestimates of the total fault trace 
length as the regions of very low displacement close to 
the tips are frequently not recorded. Lengths of fault 
traces which are bounded by their intersections with 
other faults have no obvious significance, whether the 
other faults are of the same age with displacement 
mmsferred from one fault to the next, or whether the 
faults are of different ages. The inclusion of faults which 
intersect others in the same database may affect the 
apparent relation between D and W. For example, 
where fault branches occur, smaller displacement faults 
will usually be taken to be splays off larger displacement 
faults, and because they terminate at intersection 
(branch) points where displacement is not zero they 
should not be treated as independent faults: as branch- 
ing splays have shorter trace lengths than isolated faults 

with the same D their inclusion in a dataset will lead to a 
lower estimate of the value for n (see below). 

Displacements 

An obvious displacement parameter  is the maximum 
displacement (Dm) on the fault surface, which in the 
case of the ideal elliptical fault lies at the centre of the 
fault surface. This value can be accurately determined 
only where the fault surface has been mapped in three 
dimensions. In other cases the maximum displacement 
on a mapped fault trace (De) may be the only value 
obtainable. For a linear displacement profile from fault 
centre to tip, mean values of Dc on chords parallel to a 
principal axis of an elliptical fault surface will be 0.5Din, 
i.e. Dc underestimates Dm more than Wc underestimates 
Wnl. D without subscripts refers to data for either Dm or 
D~, or both where the distinction is either not possible or 
is unnecessary. 

Another  measure which could be used for displace- 
ment is the mean value of the displacement on a fault 
surface. This parameter  has the advantage of being more 
easily compared with values of mean slip on a fault 
surface during a seismic slip event (u) which is the 
parameter usually used by earthquake seismologists. 
However,  the difficulty of obtaining the mean value of 
displacement on a fault surface, or even along a fault 
trace, is even greater than that of determining the 
maximum displacement value. 

As a general rule, displacements are most easily 
measured on dip-slip faults in sedimentary successions 
with low bed dips. Measurement of displacements on 
strike-slip faults is difficult in most rock sequences and 
estimates of maximum displacements on strike-slip fault 
traces are likely to be subject to relatively large errors. 
Good quality data are therefore likely to be biased 
towards dip-slip faults in sedimentary successions but 
such data are mostly limited to faults with maximum 
displacements of ca 5 km or less. Ambiguity occurs 
where a significant proportion of the fault displacement 
is accommodated by continuous deformation, or fault 
drag, rather than by slip on a fault surface discontinuity. 
In such cases the recorded displacement should include 
the continuous component.  Similarly, where significant 
displacement is accommodated by continuous defor- 
mation the fault dimension should include the extent of 
any 'roll', or fold, occurring at the lateral tip of the trace 
of a fault discontinuity. 

An additional complication is the inclusion of faults 
which intersect boundaries between strongly contrasting 
lithologies in which displacement is accommodated by 
different yield processes in the different lithologies. 
Such faults may be included in some of the published 
datasets. Faults may terminate abruptly at the boundary 
of a competent unit, at which there is still significant 
displacement, with a very incompetent unit which 
accommodates displacement by flow across the fault 
plane and a change of layer thickness. In such a case, 
displacement variation may be negligible along the fault 
surface within the competent layer. In circumstances 
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where the linear dimension of a small fault of this type is 
on a scale comparable with that of the lithological 
layering, the structure is best regarded as a type of 
boudinage rather than as a fault. 

Data limitations 

The relationship between displacement and dimen- 
sion is believed to be dependent  on the mechanical 
properties of the faulted rocks (Walsh & Watterson 
1988). Ideally, D vs Wdata  would be classified according 
to rock type and a dataset of this type would certainly be 
of great value. However,  even small faults are rarely 
contained within a uniform rock type and only the 
broadest of rock classifications can be used to character- 
ize each dataset: for most datasets the only useful 
distinction which can be made is between faults in 
sedimentary cover sequences and those in metamorphic 
basement rocks. 

Given the inherent difficulties attached to measure- 
ment of the parameters of interest and to assessing the 
quality of an individual set, it might be thought that little 
purpose would be served by collecting and attempting to 
interpret these types of data. The single, but overriding, 
factor in favour of a more positive view is the wide range 
of fault sizes which occur. As with some other geological 
structures, fault sizes span a considerable range and 
recognizable faults have maximum displacements 
ranging over at least 8 orders of magnitude, i.e, from 1 
mm to 100 km. In a dataset spanning only a small range 
of D and W, inaccuracies of measurement and the effects 
of multivariate control of the D vs W relationship may 
obscure the existence of a simple relationship between 
the two principal variables. The effects of additional 
variables and of inaccuracies of measurement are of 
much less significance when a wider size range of data is 
examined. 

The use of data spanning several orders of magnitude 
of fault size introduces two further problems, however. 
The first of these problems is that no dataset assembled 
from a single source (e.g. a map) or acquired by a single 
method (e.g. by examination of outcrops, mine plans, 
seismic reflection profiles) is likely to span a sufficient 
range of fault size. Combining datasets from different 
sources inevitably degrades the data to some extent. The 
second problem is that data spanning several orders of 
magnitude of fault size can only be plotted using logar- 
ithmic scales, which can be deceptive. D vs W data 
distributions on log-log plots will inevitably show some 
areas of the plot to be devoid of data, because faults with 
the geometries appropriate to these areas would not be 
recognized and recorded even if they existed. The sig- 
nificance of some blank areas of the plots is therefore 
uncertain and their existence may lead to concentrations 
of data points being accorded greater significance than is 
merited. An ancient fault with large W/D ratio, e.g. W = 
100 km and D = 10 m, is most unlikely to be recognized 
as such. If however the displacement is as large as 100 m 
for a 100 km fault width, then it is possible that the fault 
might be recognized because smaller faults with similar 
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Fig. 1. Logarithmic plot of displacement (D,,) vs width (W,,) for 
faults (dataset 2), from Walsb & Watterson (1988). Also shown are 
those areas (stippled) which, following the assumptions outlined in the 

text, are inevitably devoid of data. 

W/D ratios have been measured. The highest measured 
W/D ratio (ca 3000) derives from coal mine plan data 
and it is considered very unlikely that higher ratios 
would be measured from the other available data 
sources. The length of a fault in the slip direction (Lm) 
places an upper limit on the value of D for that fault, so 
that for a circular fault (W/L = 1) W/D must be greater 
than 1. Those areas of D vs W plots which are inevitably 
devoid of data are shown in Fig. 1 (assuming a circular 
fault), together with fault data from Walsh & Watterson 
(1988), where the bounding curves show why the con- 
centration of data points must be interpreted with cau- 
tion. 

DISPLACEMENT-DIMENSION DATA 

Datasets used 

Data are from normal faults, strike-slip faults and 
thrusts, and are derived from a variety of sources. 
Datasets included in the statistical analysis are grouped 
as follows. 

(1) A British coalfield dataset as described in Walsh & 
Watterson (1988). The dataset contains Dm vs Wm data 
for 34 fault radii and Dc vs Wc data for 518 fault traces 
(Fig. 2a). The estimated shear modulus for the rocks 
containing these faults is 3-10 GPa. 

(2) A mixed dataset providing what are believed to be 
Dm vs Wm data for 70 normal faults and thrusts (Fig. 2b). 
This dataset contains some coalfield (contoured faults 
from dataset 1) and non-coalfield fault data listed in 
Watterson (1986), Barnett  et al. (1987) and Walsh & 
Watterson (1989), including 20 thrusts in the Canadian 
Rockies from Elliott (1976). With the exceptions of the 
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British Coalfield and the Canadian Rockies datasets, 
both of which are considered later, datasets are too small 
for individual statistical analysis. The wide range of 
rocks from which this combined dataset derives have 
estimated shear moduli within the range 3-30 GPa. 

(3) A mixed dataset (Fig. 2b) comprising 38 fault 
traces listed in table 1 of Walsh & Watterson (1988) and 
six normal fault traces from Krantz (1988). Two datasets 
listed in table 1 of Walsh & Watterson (1988) are not 
included: reactivated synsedimentary faults from 
Arizona-Utah (Babenroth & Strahler 1945) and small 
faults in semi-consolidated sediments from Japan (Mur- 
aoka & Kamata 1983). The synsedimentary faults are 
excluded because the displacements recorded at the 
contemporary surface or on older synfaulting horizons 
only represent minimum estimates of the cumulative 
displacement on the fault (synfaulting horizons have 
lower D / W  ratios than prefaulting horizons and will 
follow a modified growth curve; Walsh & Watterson 
1988). Since this dataset comprises fault traces con- 
tained within a variety of lithologies a representative 
estimate of shear modulus is not possible: shear moduli 
are however greater than 1 GPa. 

(4) Values of Dc and Lc for 16 faults recorded by 
Muraoka & Kamata (1983) from Quaternary lacustrine 
deposits in Japan (Fig. 2c) for which the shear modulus 
has been estimated as 0.1-0.2 GPa (Walsh & Watterson 
1988). 

(5) A new dataset of Dc vs Wc for 53 normal faults in a 
North Sea oilfield (Fig. 2c), measured on subsurface 
horizon maps derived from three-dimensional seismic 
reflection data. The faults are imaged within a sequence 
of poorly lithified Mesozoic sandstones and siltstones for 
which the shear modulus of the entire sequence at the 
time of faulting is not known but is estimated as ca 3 
GPa. 

(6) Maximum offset (D~) and fault trace length (L~) 
data from 136 continental strike-slip faults (Fig. 2c) 
collated by MacMillan (1975) from the geological litera- 
ture and analysed by Ranalli (1977, 1980). Estimates of 
length and, particularly, offset appear to be subject to 
large errors in some cases and no distinction is made 
between transcurrent and transform faults (Ranalli 
1977). The effective shear modulus of rocks containing 
these faults is taken to be a value representative of the 
upper crust, i.e. 25-30 GPa. Direct comparison between 
this dataset and others can only be made if the relevant 
relationship between L and W is known: for combining 
with other datasets we assume, in the first instance, that 
L = W. The data plotted (Fig. 2c) are derived from 
tabulated datasets given by MacMillan (1975). 

(7) Vertical displacement (De) and fault trace length 
(Wc) data for 78 normal faults measured from a 1:50,000 
structure map of the Lorraine Coalfield by Villemin & 
Sunwoo (1987). The data plotted (Fig. 2d) were ob- 
tained by digitizing data points on the published diagram 
of Villemin & Sunwoo (1987). The effective shear 
modulus for rocks containing these faults is taken to be 
between 3 and 10 GPa, which is the appropriate range 
for British Coalfield strata of similar age. The dataset 

appears to include many fault traces terminated by 
intersection with other faults rather than by tip-points. 

(8) Measurements of De and Wc for 22 normal faults in 
the Ruhr (n = 12) and South Wales (n = 10) coalfields 
(Fig. 2e) (Gillespie in press). The shear modulus for the 
rocks containing these faults is estimated to be 3-10 
GPa. 

(9) Measurements of Dc and W~ for 13 thrusts in the 
Ruhr (n -- 9), South Wales (n = 2) and Appalachian (n 
-- 2) coalfields (Fig. 2e) (Gillespie in press). The shear 
modulus for the coalfield rocks is estimated to be 3-10 
GPa. Although measurements of Dc and Lc for thrusts 
from the Ruhr coalfield are presented elsewhere (Gilles- 
pie in press), these data are not easily compared with 
other D - W  data because they show a broad range of 
aspect ratios (W/L  ca 3-18). 

(10) Displacement and length data, assumed to rep- 
resent D~ and We, for 62 faults from Baykal and Trans- 
baykal (Ruzhich 1977); the data shown in Fig. 2(0 were 
obtained by digitizing a published plot (Ruzhich 1977, 
fig. 1). In terms of fault size the data fall into two distinct 
groups: large faults with displacements greater than 100 
m which were measured from fault maps, and small 
faults with displacements less than 10 m measured at 
outcrop. Of the small faults only one has displacement 
greater than 2 m and since a description of the lithologies 
involved is not available it is possible that these are 
boudinage type structures: a boudinage origin, with flow 
of adjacent lithologies is suggested by the very high 
D~/W~ ratios of some faults (e.g. one fault has a maxi- 
mum displacement of 2 m and a fault trace length of 
10m). Representative shear modulus values for the 
volume containing the larger normal faults are difficult 
to estimate, but since the faults probably extend through 
much of the upper crust a relatively high shear modulus 
is likely (>10 GPa). 

Additional datasets which have not been included in 
the statistical analysis are represented in Fig. 3. Two of 
these datasets (11 and 12) have recently been described 
and analysed in some detail by Marrett & Alimendinger 
(1991) and are here represented as fields rather than by 
data points for individual faults. 

(11) Dc and Wc data for 242 normal fault traces in the 
Gulf of Mexico (Marrett & Allmendinger 1991). Data 
were obtained by Marrett & Allmendinger (1991) from 
subsurface horizon maps derived from an interpretation 
of seismic reflection data. 

(12) D~ and W~ data for 130 surface fault traces (Fig. 3) 
of normal faults in Japan (Minor Faults Research Group 
1973). 

(13) D~ and W~ data for eight fault scarps in Iceland 
(Fig. 3) (Opheim & Gudmundssen 1989). In common 
with the synsedimentary faults referred to above, fault 
displacements at the contemporary surface are perhaps 
best regarded as minimum estimates of the cumulative 
displacement on the fault (see dataset 3). This small" 
dataset is not included in Table 1 but the results of 
regression analysis are referred to later. 

A dataset given by Menard (1962) is excluded because 
it includes several transform faults. 
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Fig. 2. Logarithmic plots of displacement vs width for various datasets: (a) D vs We, for datasets 1 (crosses) and 3 (open 
circles); (b) Dm vs Wrn, for dataset 2 which includes contoured faults from dataset 1 (open circles); (c) Dc vs Wc for dataset 5 
(open circles) and Dc vs Lc for datasets 4 (upright crosses) and 6 (diagonal crosses); (d) Dc vs Wc for dataset 7; (e) Dc vs Wc 

for datasets 8 (crosses) and 9 (open circles); (f) De vs W~ for dataset 10. 
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Fig. 3. Logarithmic plot of displacement (D~) vs width (We) showing 
individual faults for dataset 13 (solid circles) and data fields for 

datasets 11 (vertical lines) and 12 (horizontal lines). 

Statistical analysis of data 

Table 1 shows statistical parameters for each indi- 
vidual analysed dataset and for various combinations of 
datasets. The results of regression analysis for D on W, 
W on D and for double regression (reduced major axis 
regression) are expressed as values of n, i.e. the ex- 
ponent of W. Datasets with low correlation coefficients 
have narrow ranges of fault sizes and are characterized 
by large discrepancies between the values for n obtained 

by the three methods. All reduced major axis regression 
lines have n > 1.0 and, with three exceptions, 1.2 -< n -< 
1.8 for individual datasets. Individual datasets for which 
n < 1.2 are characterized by the following features: (i) 
dataset 3 is a mixed dataset and the regression line is 
dictated by one outlying data point, of 44, with high W 
and D; (ii) dataset 8 is small (n = 22) and the low value of 
n is representative of the data, although it is influenced 
by the inclusion of one small fault with W an order of 
magnitude smaller than W of the next largest fault; (iii) 
dataset 10, from the Baykal rift, comprises data which 
falls within two distinct fields (see above) with quite 
different regression lines. The low n value mainly de- 
rives from data for smaller faults (<2 m displacement), 
which could be boudinage structures, whereas larger 
faults provide a higher n value of 1.44, which is consist- 
ent with data from other areas. 

Combined datasets also consistently provide values of 
n greater than 1.0, with values ranging from 1.4 to 1.85, 
except for those including datasets 4 and 10. Inclusion of 
dataset 10 (Baykal) leads to a decrease in n (although 
values remain >1.1) but since the nature of small faults 
within this dataset is not known inclusion of the data in 
combined datasets is considered inappropriate. The 
dataset from Quaternary lacustrine sediments (Mur- 
aoka & Kamata 1983) is excluded from all combined 
datasets because the shear modulus of the sequence 
containing the faults is over an order of magnitude less 
than that for all other datasets; material properties, 
including shear modulus, are an additional variable in 
the D vs W relation (i.e. c in equation 1). The conse- 
quences of producing combined datasets is illustrated 
for data from the British and Lorraine Coalfields (Fig. 
4a) which, when combined give an order of magnitude 

Table 1. Parameters characterizing individual and combined datasets (numbers denote datasets referred to in text). No . - -number  of data values 
in dataset. The range, minimum, maximum and mean values of log W (or where appropriate L, see text) and log D are provided for each dataset. 
The following statistical parameters are listed for each dataset: rp--Pearson correlation coefficient; rs--Spearman correlation coefficient; 
M~.--value of n for least-squares regression of log D on log W; Mr--value of n for least-squares regression of log W on log D; M~.v--value of n for 

reduced major axis, or double, regression 

log W log D 

Dataset No. Range Min Max Mean Range Min Max Mean rp rs My M, M~y 

1 552 1.62 2.05 3.67 2.65 2.78 - 1.22 1.56 0.01 /).62 0.50 0.90 2.37 1.46 
2 70 2.95 2.64 5.611 3.74 4.65 -1t.05 4.60 1.80 1t.96 0.94 1.59 1.72 1.65 
3 44 2.36 2.83 5.18 3.68 2.45 1t.79 3.24 1.66 1t.74 0.67 0.75 1.39 1.02 
4 15 1.12 -0 .52 1t.61t -1t.02 1 .35  -2.41t - 1.1t5 - 1.91 11.78 0.60 0.94 1.54 1.20 
5 53 1.15 2.85 4.01t 3.46 1.70 0.30 2.00 1.18 1t.43 0.44 I).64 3.52 1.50 
6 136 1.63 4.54 6.18 5.28 2.70 3.011 5.70 4.41/ 11.73 I).71 1.05 1.94 1.43 
7 78 1.69 2.74 4.43 3.46 2.07 0.81 2.88 1.81 0.67 0.66 0.94 2.11 1.41 
8 22 2.52 1.68 4.19 3.30 2.64 -0.15 2.48 1.44 0.95 0.93 11.97 1.08 1.02 
9 13 2.27 2.18 4.46 3.81 2.9// 0.30 3.20 2.31 1t.95 11.84 1.19 1.32 1.25 

10 62 7.20 -1.21 5.98 1.26 7.56 -2.52 5.114 -0.15 0.99 0.97 1.00 1.113 1.02 

l--faults 34 1.112 2.64 3.67 3.10 1.61 -11.115 1.56 0.68 0.69 0.70 1.23 2.60 1.79 
1--fault traces 518 1.51 2.05 3.56 2.62 2.46 - 1.22 1.24 -0.03 1/.52 0.43 11.74 2.75 1.43 

1 ~2,3 632 3.54 2.1/5 5.611 2.82 5.82 - 1.22 4.60 0.29 0.91 0.66 1.43 1.74 1.58 
1.7 630 2.811 2.05 4.43 2.75 4.10 -1.22 2.88 0.23 I).82 0.65 1.50 2.25 1.84 

6,7,10 276 7.39 - 1.21 6.18 3.87 8.22 -2.52 5.71t 2.65 111.98 0.95 1.11 1.16 1.14 
1-3,5-10 996 7.52 -1 .22 6.311 3.17 8.22 -2.52 5.70 1.04 0.93 0.89 1.32 1.53 1.42 
1-3,5-9 934 4.62 1.68 6.3[) 3.29 6.92 - 1.22 5.70 1.12 0.96 0.88 1.58 1.71 1.65 
2,6,7,10 346 7.39 -1.21 6.18 3.84 8.22 -2.52 5.711 2.47 0.96 0.96 1.13 1.22 1.18 
1,2,3,6,7 846 4.12 2.05 6.18 3.28 6.92 - 1.22 5.70 1.09 0.97 1).85 1.60 1.71 1.65 

2,6,7 284 3.53 2.64 6.18 4.41/ 5.74 -0.05 5.70 3.05 0.95 1/.94 1.46 1.61 1.53 



Limitations of data from single faults 1163 

h5 

-¢ 

_~ 
- o  

_o = 

6 

5 

4 

2 

1 - "  

O ~  

- 1 - -  

-2 

-3 

-2 

6 
- 

5 
- 

4 

3 

2 

1 

0 

-1 

- 2 -  

-3 

-2 

' 1 

-1 

' I 

0 

' I ' 

1 

a) 

ea  ~ 

o #o 
x • 

2 3 

b) 

[ ~ 1 ~ 1 ~  

4 5 6 7 

l 
xx  

x~ ~ x ~ 

x :~1' ~, 

-1 0 1 2 3 4 5 6 

log(width) [rn] 

Fig. 4. Logarithmic plots of displacement (De) vs width (We) for 
combined datasets. (a) Combined coalfield dataset (datasets 1 and 7). 
(b) Main combined dataset (datasets 1-3 and 5-9: dataset 2 is for Dm vs 

Wm and dataset 6 is for Dc vs Lc). 

increase in the ranges of D and W relative to those for 
the individual datasets, with consequent increase in the 
value of n to 1.84. Combining data for all faults in rocks 
with shear moduli greater than 1 GPa (Fig. 4b) gives a 
value for n of 1.637; Baykal data are not included in this 
combined dataset because rock types are unknown. 

The robustness of the relationship between D and W 
can be tested in other ways. The potential shortcomings 
of individual datasets can be identified and then quanti- 
fied in terms of their likely effects on any derived value 
of n. The effect of omission of certain datasets from 
combined datasets can also be quantified. These testing 
procedures have been performed in the following ways 
on a combined dataset which includes all but two (4 and 
10) of the individual datasets. 

(i) The dimensions of strike-slip faults in dataset 6 are 
chords measured parallel to the slip direction (i.e. L~). 
For direct comparison with other datasets, for which the 
chords are perpendicular to the slip direction (We), an 

estimate is required of the L: W ratio of strike-slip faults. 
We have assumed in the first instance that W = L (as in 
Fig. 2c and Table 1). The down-dip extent of large faults 
is however limited by the thickness of the seismogenic 
layer (i.e. for strike-slip faults W is fixed; Scholz 1982, 
1990, Strehlau 1986) below which displacements are 
likely to be accommodated on a ductile shear zone. At 
greater depths displacement decrease on a ductile shear 
zone can be accommodated either by pure shear or by 
transfer to other shear zones and the combined dimen- 
sion of the fault and shear zone is therefore not appropri- 
ate for comparison of L and W data. The parameter 
required is that which describes the equivalent relation 
between L and W on individual faults bounded by tip 
lines i.e. the relation between the slip-parallel (edge 
dislocation) dimensions and the slip-perpendicular 
(screw dislocation) dimensions of faults. For this we use 
the L:W ratio established for faults for which we have 
displacement measurements over the entire surface (ca 
1:2; Walsh & Watterson 19891. The effect of assuming a 
W/L ratio similar to that for other faults (i.e. 2.0), is a 
decrease in the value of n from 1.65 to 1.52 (Fig. 4). 

(ii) Chord data from British coalfields represent one 
of the better quality datasets because they are derived 
from mine plans (dataset 1 ; Walsh & Watterson 19881. 
The large number of data points within this dataset has a 
significant influence on the best fit regression line such 
that exclusion of the dataset leads to a decrease in n from 
1.65 to 1.563 (Fig. 4a). 

(iii) Applying the restrictions in both (i) and (ii) 
results in a decrease in n from 1.65 to 1.40. 

(iv) Although inclusion of the Baykal dataset is con- 
sidered inappropriate, for the reasons previously out- 
lined, a combined dataset including these data, together 
with the restrictions in both (i) and (ii), still gives a value 
of n which is significantly greater than 1.(1 (i.e. n = 1.15; 
Fig. 5). If this dataset is omitted, as we believe it should 
be, the values of n obtained by regression for all com- 
bined datasets are >1.4. 

Figure 6 shows the field containing most of the data 
points for all datasets excluding 4 and 10. Also shown are 
fields for data from Marrett  & Allmendinger (1991), 
which are consistent with all other datasets, in respect of 
both position and trend (Fig. 6). 

Limitations of statistical analysis 

The purpose of this section is to consider the useful- 
ness of regression analysis in establishing the value of n, 
as opposed to developing a predictive tool. The standard 
method of determining the value n for an individual 
dataset is to calculate the best-fit line through the data 
points. Although we give values for n derived in this 
way, we have previously expressed doubts about appli- 
cation of this procedure to data of this type (Walsh & 
Watterson 1988) and these doubts remain. There are 
two distinctive features of the data which must be taken 
into account, neither of which is uncommon in geologi- 
cal datasets. 

The first feature is that although the standard pro- 
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Fig. 5. Logarithmic plots of displacement (Dc) vs width (We) for 
combined datasets. (a) Combined dataset (datasets 1-3 and 5-10; 
dataset 2 is for D m vs W m and dataset 6 is for Dc vs Lc). (b) As in (a) but 
with dataset 1 omitted and with dataset 6 replotted assuming W = 2 L 

(see text for details). 

cedure for regression analysis is to regress y on x where x 
is the independent variable, it is not obvious in this case 
whether D or W is the independent variable. In such 
circumstances, regressing y on x is arbitrary and reduced 
major axis regression is necessary. Reduced major axis 
regression (Davis 1986), hereafter  double regression, 
minimizes the product of the deviations in x and y, and is 
a commonly used technique in the study of growth of 
organisms (biometry) where it is also not possible to 
decide which variable should be x and which variable 
should be y. From Table 1 it can be seen that for the 
several individual and combined datasets there are sig- 
nificant differences between the slopes of best-fit lines 
determined by regressions of D on W, W on D and by 
double regression. These differences are an indication of 
the importance of the second feature of the datasets 
which must be taken into account, as follows. 

An implicit assumption of regression analysis is that 
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Fig. 6. Logarithmic plot of displacement vs width showing the main 
field (shaded) for the combined dataset (datasets 1-3 and 5-9) together 
with the superimposed fields for datasets 11 (vertical lines) and 12 
(horizontal lines). Also shown are individual data points for those 
faults in the combined dataset which plot outwith the main field, and a 
pair of parallel lines which bound the field within which measurable 

W/D ratios occur. 

the data represent a system with only one degree of 
freedom, i.e. for any value of x there is ideally only a 
single corresponding value of y. D vs W data are not of 
this type because the relationship between D and W is 
influenced by other variables (e.g. shear modulus), the 
effects of which are shown by variation in the value of 
the constant, c. Walsh & Watterson (1988) claimed that 
the shear modulus of the rocks containing a fault exer- 
cises a significant, although limited, control on the D vs 
W relation. Regardless of whether or not shear modulus 
has the significance claimed for it, the potential influ- 
ence of one or more additional variables must be con- 
sidered. If the effects of one or more additional variables 
are present in the data then D vs W data points will not 
be expected to lie along a line but to lie within a band; 
the width of the band will depend on the role and on the 
range of the additional variable(s). The potential band 
width of D vs W data distributions is also increased by a 
number of factors which include: (i) the use of chord 
data (fig. 4, Walsh & Watterson 1988); (ii) the effect of 
errors in measurement;  and (iii) the inclusion of seg- 
mented faults and branching splays. We know of no 
statistical method which permits definition of the best-fit 
band. 

Most of the datasets show a band distribution with the 
width of the band approximately equivalent to an order 
of magnitude variation in W. Regardless of the reason 
for this distribution, it is evident that a meaningful 
estimate of n cannot be derived from any dataset which 
does not span several orders of magnitude of D and W. 
Datasets which span only 1 or 2 orders of magnitude 
variation in D and W, which is the case with most of the 
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individual datasets, will inevitably give misleadingly low 
values of n when best-fit lines are calculated. We have 
investigated the effects of limited ranges of D and W on 
best-fit lines by constructing synthetic datasets. The 
datasets are formed by randomly distributing data points 
within rectangular bands of different aspect ratio but 
with 1 order of magnitude range of W for a given D. The 
data fields have aspect ratios ranging from 1 to 10 and 
slopes of 1.5 and 2.0 for the long axes of the rectangles; 
the number of data points increases linearly from 100 to 
1000 with increasing aspect ratio. For an aspect ratio of 
10 the data points span ca 5.5 orders of magnitude of W 
and ca 9.5 orders of magnitude of D, for a slope of 2.0, 
and 6.5 and 9.5 orders of magnitude of D and W, 
respectively, for a slope of 1.5. Slopes of best-fit lines for 
regressions of D on W, W on D and for double regression 
have been calculated for aspect ratios ranging from 1 to 
10. The exercise was repeated several times for different 
random sets of data points and the results are relatively 
stable. 

Typical results for slopes of 1.5 and 2.0 are shown in 
Fig. 7 and clearly demonstrate that best-fit lines, even 
those obtained by double regression, can be very mis- 
leading when applied to datasets of this type. Slopes 
derived by double regression analyses of datasets with 
aspect ratios ---2.0 are in error by ca 0.5 or more and only 
at aspect ratios of ->4.0 can accurate estimates of slope 
be made. No reasonably well constrained individual D 
vs W dataset has an aspect ratio greater than ca 4.0. 
While regression analysis cannot therefore provide an 
accurate value for n it clearly shows that n > 1.0 for the 
datasets in Table 1. Dataset 10 (Ruzhich 1977) has an 
aspect ratio of 10.7 but, for the reasons previously 
outlined, this dataset is thought not to be well con- 
strained. Quantitative analysis therefore usually re- 
quires the use of a combined dataset, as in Watterson 
(1986) and Walsh & Watterson (1988). The use of 
combined datasets introduces a further problem, how- 
ever, because the individual datasets are derived from 
different rocks. In general, the larger the faults in a 
dataset the higher the shear modulus of the rocks is 
likely to be. Fault data from outcrop are most likely to be 
for small faults in sedimentary sequences which may be 
poorly lithified, small to intermediate ( D  < ca 100 m) 
sized faults within either lithified or moderately lithified 
sedimentary rocks are well represented in coalfield and 
oilfield data, whereas data for larger faults (D >> 100 m) 
are generally derived from oilfield maps or surface 

Fig. 7. (a) Synthetic dataset with band width of 1 order of magnitude 
of fault width and with aspect ratio of 10:1 and slope of 1.5 (see text for 
details). (b) Values of n derived from regression analysis performed on 
synthetic datasets, with band slope of 1.5, as shown in (a) but with a 
range of aspect ratios (1-10). Three curves are shown and represent 
different types of regression: regression of D on W (fine solid curve), 
W on D (broken curve) and double regression (heavy solid curve). 
(c) Values of n derived from regression analysis performed on syn- 
thetic datasets, with band slope of 2.0 and band width of 1 order of 
magnitude, but with a range of aspect ratios (1-10). Three curves are 
shown and represent different types of regression: regression of D on 
W (fine solid curve), W on D (broken curve) and double regression 

(heavy solid curve). 
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fields for individual datasets. Data fields for main datasets are shown: 

legend provides dataset numbers. 

geological maps and are for faults which are likely to 
extend into or are entirely within metamorphic or other 
basement rocks. As has previously been pointed out 
(Walsh & Watterson 1988), a systematic variation of 
shear modulus with fault size is therefore to be expected 
and will introduce a systematic bias towards lower slopes 
of best-fit lines for the combined datasets. A related 
effect is that for small faults (D < 10 m) a wider range of 
shear moduli can be sampled because individual faults 
may be contained within single lithological units; for 
progressively smaller faults the band width of the avail- 
able data will broaden. This effect is illustrated by the 
faults in dataset 4, which each occur within poorly 
lithified units dominated either by sand or by silt (Fig. 8). 

Our belief is that, while the data clearly demonstrate 
that n >> 1.0, a definitive choice between n = 1.5 and n = 
2.0 cannot be made on the basis of statistical analysis of 
the data currently available. Given the quality and other 
characteristics of the data we believe that statistical 
analysis is of limited value and that the data can be 
examined most objectively by evaluating individual 
datasets as fields, as in Fig. 8. This procedure is not 
tantamount to ignoring the data, as has been suggested 
by Scholz & Cowie (1990), but is a necessary acknowl- 
edgement of the limitations of the data. 

km and large faults up to 1500 km trace length. These 
values correspond to a value for n of ca 1.5. Elliott 
(1976), on the basis of data for Mesozoic thrusts in the 
Canadian Rockies proposed a constant W / D  ratio of 14, 
i.e. n = 1.0; we have accessed these data by digitizing 
data points on published graphs and for double re- 
gression n = 1.54. Ranalli (1977), using the database 
compiled by MacMillan (1975), proposed that n = 1.17 
on the basis of regression of D on W (for double 
regression n = 1.43, Table 1); the aspect ratio of the data 
field is ca 2.5. Ruzhich (1977) interpreted dataset 10 as 
indicating that n = 1.18 on the basis of regression 
analysis but, as shown above, faults with displacements 
greater than 2 m provide a value for n of 1.44. Villemin 
& Sunwoo (1987), using data from Lorraine coalfield 
maps, proposed that n = 1.18, apparently on the basis of 
regression of D on W (for double regression n = 1.41, 
Table 1); the aspect ratio of the data is ca 1.6. Watterson 
(1986) and Walsh & Watterson (1988) proposed that n = 
2.0, as being within the range allowed by the data and as 
being the value which led to the simplest growth model. 
Opheim & Gudmundsson (1989) using data for small 
(<ca 50 m displacement) Icelandic fault scarps (dataset 
13) suggest that n = 1.0 with a mean W / D  ratio of 86; this 
dataset includes only eight faults but has a high aspect 
ratio (ca 4) and double regression provides n = 1.06. 
Scholz & Cowie (1990) proposed that n = 1.0 on the 
basis of individual consideration of six published data- 
sets which, with the exception of one small dataset 
(dataset 13), have aspect ratios of < ca 3 (datasets 4, 6, 7 
and 13, and the British coalfield and Canadian Rockies 
data included in dataset 2; Table 1). Marrett  & Allmend- 
inger (1991) used a combined dataset, which included 
datasets 6, 11 and 12 and data from Menard (1962), with 
an aspect ratio of ca 7.0 and suggested that n = 1.5, on 
the basis of regression of D on W giving a best-fit line of 
slope 1.46. This review shows that most authors have 
concluded that n > 1.0, albeit on the basis of datasets 
which generally have low aspect ratios. The original 
estimates are substantiated by double regression which 
provides estimates for n of >1.4 for all but one of the 
datasets (dataset 13). 

VALUES OF n IN RELATION TO FAULT 
GROWTH MODELS 

Significance o f  n 

Previous  estimates o f  n 

The first suggestion of a systematic relationship be- 
tween D and W was that of Menard (1962) which was 
based on data for strike-slip faults. Many of the faults for 
which data were presented are transform faults but 
nevertheless it was recognized that significant differ- 
ences exist between small and large faults. Menard 
(1962) suggested that W / D  ratios for small faults were 
approximately 7 and those for large faults approximately 
3. In this context small faults were in the range 10-100 

A systematic relationship between D and W for faults 
of different size would be unlikely unless a similar 
relationship existed between successive stages in the 
growth of individual faults. The value of n is thus a 
severe constraint on possible growth models. Alterna- 
tively, growth models can be used to discriminate be- 
tween possible values for n within the range allowed by 
the data. This procedure has previously been used in 
proposing that n = 2.0, on the grounds that this value 
was both within the limits allowed by the data and also is 
the value consistent with the simplest growth model. 
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The crucial difference between various proposed values 
of n is that between proposals that n = 1.0 and proposals 
that n > 1.0 (see below); the primary objective of 
analysis of D vs W data must be to establish which of 
these alternatives is correct. In this section we describe a 
variety of growth models, preceded by a consideration 
of the earthquake seismological data which provide 
some constraint on single slip events on faults. 

Earthquake  data 

Earthquake seismological studies have shown that 
there is a linear relationship between W and u for single 
slip events, such that the slip/width ratio for large 
intraplate faults is ca 6 × 10 -5 (Scholz 1982, Scholz etal.  
1986). For a given shear modulus, the slip/width ratio for 
a single slip event determines the stress drop (As). Stress 
drops are relatively constant over a broad range of 
earthquake size (ca 10 orders of magnitude, in terms of 
seismic moment Mo), with values generally ranging from 
1 to 100 bars (Scholz 1990). 

The stress drop for a circular fault is given by the 
expression 

As ---- (77rG/16)u/R, (2) 

where G is shear modulus, u is slip and R is fault radius 
(Kanamori & Anderson 1975). Therefore  the locus of 
single slip events for given shear moduli can be drawn for 
a given stress drop value. Earthquake curves are shown 
in Figs. 9(a) & (b) for stress drop values of 30 and 100 
bars, for a range of shear moduli. Figure 9(c) shows the 
single field containing the main combined dataset (ex- 
cluding dataset 10) and the field for dataset 4, and 
earthquake curves for As = 30 bars. The field of the main 
dataset shows only limited overlap with earthquake 
curves of appropriate shear moduli, i.e. 3-30 GPa. On 
the other hand, the field for dataset 4 straddles the 
earthquake curves for shear moduli equivalent to those 
of rocks containing the faults (0.143.2 GPa),  an obser- 
vation which suggests that the faults may be either 
single-slip events or may have grown in a limited number 
of events. 

A variety of growth models is described below and the 
basic assumption in each of them is that the mean slip on 
a fault during a single seismic cycle (u) is directly 
proportional to the dimension of the surface over which 
the slip occurs, such that from (2) 

. kW,  (3) 

where k is a constant through fault growth (i.e. for a 
given fault, stress drop (As) and shear modulus (G) are 
taken as constants). A requirement of this model is that 
when slip occurs on a fault it extends over the entire fault 
surface, a feature which is consistent with the maximum 
moment model (Wesnousky et al. 1983) and the charac- 
teristic earthquake model (Schwartz & Coppersmith 
1984). These models postulate that individual faults and 
fault segments tend to generate earthquakes of essen- 
tially same size, i.e. characteristic earthquakes, that are 
a function of the fault length and tectonic setting. Be- 
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Fig. 9. (a) & (b) Earthquake curves for different shear moduli for 
stress drops (As) of 100 and 30 bars. The curves are for shear moduli of 
30, 10, 3, 1 and 0.3 GPa: curves for higher shear moduli have lower 
D/W ratios. (c) Main field for combined dataset (datasets 1, 2, 3, 5, 6, 
7, 8 and 9--stipple) and for dataset 4 (defining separate field with low 
D and W) together with earthquake curves for As of 30 bars for 

different shear moduli (10, 3, 1, 0.3 and 0.1 GPa). 
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cause log-log relationships are plotted, the plot is not 
sensitive to some departure from the assumptions of 
these models. 

G r o w t h  m o d e l s  

The fault growth models described below differ from a 
direct application of linear elastic fracture mechanics in 
that the elastic strains which accommodate the dislo- 
cation on a fault resulting from a single slip event are 
relaxed into permanent  strains before the next slip event 
(Watterson 1986, Walsh & Watterson 1988). Linear 
elastic fracture mechanics predicts that if these elastic 
strains are not relaxed D ~ W °5 (Scholz 1990), a relation 
which is inconsistent with available data (Walsh & 
Watterson 1988). The notion of stress (or elastic strain) 
relaxation is supported by the observation that the 
strains associated with large displacement faults are too 
high to be accommodated elastically (Watterson 1986). 
The basic assumption of our growth models is that the 
stress distribution following each slip event is the same in 
all but scale. Relaxation of these stresses, or elastic 
strains, by permanent  straining due to, for example, 
small-scale fracturing and pressure solution, can also be 
effected at the tip-line of the fault, where the highest 
elastic strains are imposed, either by fracture propaga- 
tion accompanying the slip event or by subcritical frac- 
ture propagation between slip events (Waish & Watter- 
son 1988). The significant material property determining 
fracture propagation for a given initial stress distribution 
is fracture toughness, which varies over only ca 1 order 
of magnitude (Walsh & Watterson 1988). The growth 
models outlined below differ only in respect of the 
relation between the amounts of slip and fracture propa- 
gation during a single seismic cycle. 

The value of n in the D vs W relation describes the 
change in fault geometry with growth. In common with 
allometric growth laws in biology an exponent of 1.0 
indicates no shape change, with self-similarity of form, 
whereas other values describe a systematic change in 
shape with growth (Thompson 1917). If n -- 1.0 faults 
not only have a much higher degree of geometrical 
similarity than if n > 1.0 but the increment by which u 
increases in successive slip events is linearly related to 
both D and W. I fn  > 1.0 then increments of increase in u 
are not linearly related to either D or W. If the fault 
dimensions remain constant while accumulating many 
slip events then n = ~ ,  which clearly is not the case. Any 
value of n which is less than infinity requires that W 
increases during the active life of a fault, i.e. a fault 
growth model is applicable. If n is constant during the 
growth of a fault, i.e. the D vs W values at successive 
stages in the growth of a single fault plot as a straight line 
on a log-log plot, then the fault growth sequence is 
severely constrained, as follows. The successive values 
of u during growth of a fault form a series and the sum of 
this series is the cumulative displacement, D, at each 
stage of growth. 

In the arithmetic growth model (Watterson 1986, 
Walsh & Watterson 1988) amounts of slip in successive 

slip events have a common difference, the slip increment 
(a), such that for a large number of slip events 

uN = aN ,  (4) 

where uN is the amount of slip in a slip event and Nis the 
(large) number of preceding slip events. The relation- 
ship between the amount of slip in a single event and the 
dimension of the slip surface is given by 

u x  = k W N ,  (5) 

where WN is the maximum dimension of the slip surface 
and k is a constant which probably varies with rock 
properties (Scholz 1982). A fault grown in accordance 
with the above two relationships satisfies the expression 

O = c W  2, (6) 

where D is the maximum cumulative displacement, W is 
the final fault width and c is a constant which is depend- 
ent on material properties of which the most significant 
is shear modulus (Fig. 10). The simplest type of series 
whose sum is given by a power law of constant power, n, 
independent of the number of terms in the series is an 
arithmetic series where n = 2.0. Although this scaling 
law is quite simple, with a linear relationship between D 
and the fault surface area (W2), there is no obvious 
mechanical reason why faults should grow in this way 
(Walsh & Watterson 1988). 

However,  the data do not demonstrate unequivocally 
that n is constant at all stages of fault growth and other 
series are compatible with the data. Some of these 
possibilities are illustrated in Figs. 11 and 12. Possible 
growth series are of two types, those which relate suc- 
cessive values of u, as in the growth models previously 
put forward (Watterson 1986, Walsh & Watterson 1988, 
Marrett  & Allmendinger 1991, Cowie & Scholz 
1992a,b), and those based on the difference, or incre- 
ment, between successive values of u. 

Growth models in which the successive slip events 
constitute a geometric series, i.e. uN = (UN-I) i, do not 
give rise to a power-law relationship between D and W 
and therefore are inconsistent with the data and for that 
reason were rejected. 

What have not previously been investigated are 
growth models in which either the slip in successive 
events or the differences between slip in successive 
events constitute a p series, such that 
in the first case 

UN = b N  i (7) 

and in the second case 

1AN - -  b lN- - I  = b(UN-1) i (8) 

o r  

tAN, = b l N - I  n t- b ( U N - 1 )  i ,  (9) 

where b is a constant. 
Numerical evaluation of the D vs W relationships for 

such series shows that, where N is large, they give rise to 
power-law growth curves with D = cW" ,  where n = 
(1 + 1/i) in the first case (Fig. 11) and n = 2 - i in the 



Limitations of data from single faults 1169 

E 8 

6 

5 

4 

3 

2 

1 

0 -  

-1 

-2 

-3 

-2 

/ 
/ 
/ 

a) 

0.1 0.3 1 3 10 30 

////// 
' I ' I ' I ' I ' 

0 1 2 3 

GPa 

I I ' I ' I ' 
-1 4 5 6 7 

E 
¢ 1  

E 

t ' t : l  

6 
. 

5 

4 

3 

2 

1 

0 

-2 

-3 ~ 1 ' 1 ' 1  

-2 -1 0 1 

3.0 

2.0 

1.5 

1.0 

0.5 

0.3 

2 3 4 5 6 7 

E 

E 
8 

2 

1 

0 

-1 

-2 

-3 

b} 
/ 

f 
/ 

/ 
/ 

i /,/ 
/ 

,/ 
/ / /  

/ , t 
i ¢ p 

i , " / j  11 / /  / ~ 
/ / /  

f / ! 

-2 -1 0 1 2 3 4 5 6 7 

l og (w id th )  [m] 

Fig. 10. Growth curves for arithmetic growth model (Walsh & 
Watterson 1988). Curves for faults contained within rocks of different 
shear moduli are shown (values are in GPa). (b) Main field for 
combined dataset, as in Fig. 9(c), growth curves for arithmetic growth 
model,  as in (a), and earthquake curves for different shear moduli (as 

in a) for a stress drop (As) of 30 bars (see Figs. 9b & c). 

second case (Fig. 12). The second case has a physical 
basis insofar as the value of the preceding slip event, and 
hence the slip increment, is linearly related to the fault 
dimension (W). In this second case, for i = 0 slip 
increments are constant and the successive slip events 
constitute an arithmetic series and n = 2.0. For i = 1.0 
the slip increment is a linear function of the preceding 
slip value and successive slip values increase by a con- 
stant proportion (= b) with each event, i.e. UN = (UN-1) 
(1 + b), and n = 1.0. This model is similar to that of 
Cowie & Scholz (1992a,b) in which the fault growth 
increment during a seismic cycle is proportional to the 
fault dimension, such that W N ° Z W N  _ 1" Their model uses 
a formulation of the Dugdale cohesion zone plate model 
for inelastic deformation at the tip of a tensile (Mode I) 
crack, but does not incorporate the relaxation of elastic 
strains within the entire faulted volume. Application of 

log(width) [rn] 

Fig. 11. Growth curves for model in which successive slip events form 
a p-series, such that UN = bN i, for i = 0.33, 0.5, 1.0, 1.5, 2.0 and 3.0. 
These models provide steady-state growth curves with n = (1 + 1/i). 
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Fig. 12. Growth curves for model in which successive slip increments 
form a p-series, such that UN -- UN-I = b(UN l) i, for i = 0, 0.33, 
0,5 and 1.0. These models provide steady-state growth curves with 

n = 2 - i .  

this model to faults relies largely on qualitative and semi- 
quantitative observations such as a proposed D vs W 
relation of n = 1.0, which is not borne out by the analysis 
presented here, and the form of displacement profiles on 
fault surfaces (see below). 

The case of i = 0.5, for which n = 1.5, is of particular 
interest as it corresponds to 

U N - -  b i N _ _  1 -~-  b ( U N _ I )  0"5 (10)  

o r  



and 

k W N  - k W N -  1 = b ( k W N -  1) 0.5 (11) 
a) 

WN - WN-,  = (b.k-°5) • (WN-I) °5, (12) 

where b.k -°5 is a constant. This model, which we 
express in terms of fault slip and dimensions, is equival- 
ent to a modification of our previous model suggested by 
Marrett & Allmendinger (1991), in which the slip incre- 
ment is linearly related to the number of slip events. 
Since the stress intensity factor, Ki, is related to the 
crack dimension (W) by 

K i ~ : A s . W  0"5 (Lawn & Wilshaw 1975), (13) 

combining these relationships for constant As gives 

WN -- WN_I  oc Ki ' (14) 

i.e. the increase in W for a single event is proportional to 
the stress intensity factor. Following this model, fracture 
propagation will occur when the critical stress intensity 
factor (Kc), or fracture toughness, is exceeded and will 
continue until the stress intensity factor (Ki) at the tip of 
the fault reduces to Kc. There is thus a physical basis for 
n = 1.5 which is lacking for other possible growth models 
based on iterative relaxation of elastic strains. 

Preferred value for n 

On the basis of data analysis alone the value of n can 
only be said probably to lie between 1.5 and 2.0; as the 
angle between lines with these slopes is only 7.1 ° we 
think it unlikely that closer resolution can be achieved in 
the foreseeable future on the basis of data analysis 
alone. If a preferred value is to be chosen by taking 
theoretical considerations into account, then n = 1.5 
seems to us to be the more likely but it is emphasized that 
significant uncertainty is still attached to this value. 

Effects of  n on fault geometries 

The value of n has an effect on some features of the 
displacement geometry of faults. Using the standard 
solution for the slip distribution on an elastic dislocation 
for a single slip event (Eshelby 1957), the effect of fault 
growth on cumulative displacement profiles can be 
assessed for different values of n. As the value of n 
decreases, profiles of cumulative displacement variation 
on fault surfaces from maximum to zero (Walsh & 
Watterson 1987) become steeper adjacent to the fault 
centre, i.e. the displacement decreases more rapidly 
away from the maximum at the fault centre (Fig. 13a). 
These cumulative displacement profiles contrast with 
those predicted by the model of Cowie & Scholz 
(1992a,b) which show a significant departure from the 
single slip event profile (Eshelby 1957) only towards the 
fault tip, where a zone of inelastic deformation is charac- 
terized by a reduced displacement gradient. The model 
of Cowie & Scholz (1992a,b) predicts that a fault main- 
tains a self-similar displacement profile through time, 
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Fig. 13. (a) Normalized displacement profiles from fault centre to 
fault tip, for growth models with different values of n: 1--fine solid 
line; 1.5--medium solid line; 2--heavy solid line. Profiles were com- 
puted by iteration using the single slip event profile for an elastic 
dislocation (Eshelby 1957, Walsh & Watterson 1987). (b) Cumulative 
displacement against number of slip events for growth models with 
different values of n: 1--fine solid line; 1.5--medium solid line; 
2--heavy solid line. In all cases the fault has the same number of slip 

events (1500) and final displacement (1000 m). 

but this result would require a progressive change of the 
incremental slip profiles during fault growth which is not 
borne out by observations on neotectonic faults. The 
form of the displacement profile determines the spacing 
of depth contours of horizons deformed within the fault 
volume (Gibson et al. 1989) and results in only minor 
differences in contour patterns between models for 
n = 1.5 and n = 2.0. 

The partitioning of displacement between successive 
growth stages of a fault (Gibson et al. 1989) is also 
determined by the value of n. Figure 13(b) shows the 
relative rates of displacement at different stages of fault 
growth for different values of n and assuming that each 
seismic cycle occupies the same amount of time. The 
exponential increase in relative growth rate for the case 
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of n = 1.0 is unrealistic (Fig. 13b), whereas the differ- 
ences between the relative growth rates for n = 1.5 and n 
= 2.0 are relatively insignificant. The assumption that 
each seismic cycle occupies the same time (Gibson et  al.  

1989) is probably incorrect because it is based on the 
assumption of constant earthquake recurrence intervals 
throughout the life of a fault. Recurrence intervals may 
increase with fault size (Walsh & Watterson 1992) but 
this is unlikely to affect the relative differences in growth 
rate patterns described above. Reference to earthquake 
recurrence intervals should not be taken as implying that 
the conclusions apply only to seismic faults as the earth- 
quake recurrence intervals are simply an expression of 
the time-averaged rates of release of strain energy. The 
displacement population (Childs et  al .  1990) of a single 
fault surface will also vary with the value of n (Walsh et  

al.  1991) but there is no significant difference when the 
populations are plotted on the conventional log-log plot 
of cumulative number vs displacement. 

CONCLUSIONS 

(1) Displacement-dimension data for ca  1350 indi- 
vidual faults are available with maximum displacements 
ranging over 8 orders of magnitude. 

(2) Maximum displacements and dimensions of faults 
are related by a power law with exponent n. 

(3) Because variables other than D and W are signifi- 
cant, departures from a straight line relationship are to 
be expected and the data cannot be analysed satisfactor- 
ily by standard statistical methods. 

(4) Data spanning several orders of magnitude of fault 
dimension must be examined in order to overcome the 
effects of the noise resulting from additional variables. 

(5) Log-log plots of the data are necessary but much 
of the plots represent values which in practice are 
unobtainable and concentrations of data points must be 
interpreted with this restriction in mind. 

(6) Suggestions that the value of the power-law ex- 
ponent  is 1.0 are not consistent with the data, but the 
data are not sufficiently precise to distinguish, on the 
basis of data analysis alone, between values of 1.5 and 
2.0 for the exponent.  

(7) An exponent of 1.5 is consistent with a growth 
model which has a reasonable mechanical basis in that 
the growth of the linear dimension of a fault in each 
growth event is proportional to the square root of the 
dimension; 1.5 is therefore the preferred value for the 
exponent.  

(8) Geometrical characteristics of faults which are 
influenced by the value of the exponent are displace- 
ment profiles on fault surfaces, depth contour patterns 
and spacings for faulted horizons, and displacement 
populations on surfaces of single faults. The differences 
in these geometrical characteristics between n = 1.5 and 
n = 2.0 are relatively minor. 
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